Fiber-Optic Components – Is This Any Way to Earn a Living?

OFC 2008 Business & Management Insights Forum
Peter Bordui, Chairman, Bookham
Outline

• Bookham overview
• Technology bubbles
• Fibre-optic components value chain
• Options for a business
• Vertical integration for worse and for better

A Matter of Perspective:
Any statements in this presentation about the future expectations, plans and prospects of Bookham, including statement containing the words “believe”, “plan”, “anticipate”, “expect”, “estimate”, “will”, “ongoing” and similar expressions, constitute forward-looking statements for purposes of the Safe Harbor Provisions of The Private Securities Litigation Reform Act of 1995. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including factors described in Bookham’s most recent Annual Report on Form 10-K and in subsequent Quarterly Reports on Form 10-Q and in the prospectus supplement relating to our proposed offering, which are on file with the Securities and Exchange Commission. These include projections of future revenues, gross margins, and earnings, continued demand for optical components, transfer of test and assembly operations to China, changes in inventory and product mix, no further change in the $/£ exchange rate and the continued ability of the Company to maintain requisite financial resources. The forward-looking statements represent Bookham’s view as of the date of this presentation. Bookham anticipates that subsequent events and developments may cause Bookham’s views to change. However, Bookham disclaims any intention to update any forward-looking statements as a result of developments occurring after the date of this document. Those forward-looking statements should not be relied upon as representing Bookham’s views as of any date subsequent to the date of this presentation.
Bookham History

1988
Entrepreneurial Start-Up
- Silicon optical circuits

2000
Initial and Follow-On Public Offerings
- $10B market cap in 2000

2002
Post –Bubble Acquisitions:
- Marconi
- IQE
- Cierra Photonics
- Nortel
- ONETTA
- New Focus

2004
Consolidation & Restructuring
- Headquarters moved, UK to US
- III-V wafer fab moved from Canada to England
- Assembly & test operations moved from England to China
- 5 sites closed
- >1500 jobs transferred

2006

2008
Bookham Today

- **Caswell (UK)** - 130 staff
 - InP Wafer Fab
- **Paignton (UK)** - 120 staff
 - Telco Product Dev
- **Zurich (Switzerland)** - 170 staff
 - GaAs Wafer Fab
 - HPL & VCSEL Product Dev
- **Santa Rosa (CA)** - 70 staff
 - Thin-Film Filters
- **San Jose (CA)** - 170 staff
 - Corporate HQ
 - Photonic Tools
- **Shenzhen (China)** - 1400 staff
 - Assembly & Test
Cumulative Deficit, 2000 through 2007

$Millions

-200
0
200
400
600
800
1000
1200

Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Jun-04 Dec-04 Jun-05 Dec-05 Jun-06 Dec-06 Jun-07 Dec-07
Technology Bubbles

World-changing invention → Building & investment → Overbuilding & overinvestment → Crash

Historical recoveries on order of decades, not years
Fibre-Optic Telco Bubble

• Analogous origins to previous technology bubbles, nothing fundamentally new

• Recovery still playing out:
 • Last 10 years of financial performance not a good guide to future expectations
 • Many companies still working through structural and operational inefficiencies associated with overbuilding
 • Market itself still with an overabundance of suppliers

• Bubble effects will continue to decrease
Figure 6.14: Components for Telecom and Datacom: Revenue and Forecast, 2000-2017

Sources: OIDA member companies, KMI, Ovum-RHK, Laser Focus World, LightCounting, iSuppli, TIA, IDC, CIR, Gartner, Dell’Oro, PIDA, OITDA, OIDA estimates

Squeezed between Customers & Suppliers

Customer-side pressures:
• Carriers coping with view that “Internet should be free”
• Components a large fraction of equipment makers’ costs
• Consolidation among carriers and equipment-makers

Price erosion, lead-time reduction, vendor-base streamlining

Supplier-side resistance:
• Suppliers with large and diversified revenues – Fibre-optics not critical
• Few suppliers for certain in-feeds
• Credit-rating weakness

Can’t push problems “upstream”
Pricing Pressures

Price Trend in percentage of 4Q05 Baseline

Source of Laser and Transponder data: Dell-Oro

Segment Price Reduction (in 12 quarters)

- WB Transponder: 42%
- Tunable Laser: 32%
- In-Feed “A”: 26%
- In-Feed “B”: 20%
Fiber-Optic Components Market Share by Supplier

Source: RHK-Ovum, Dec-07
Multiplicity of Business Models

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsystem Ass’y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Ass’y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Ass’y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip Fab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The table indicates various business models across different components (Subsystem, Module, Package, Chip) and design/assembly processes (Ass’y, Design, Fab).
Differences between Business Models

Current fibre-optic component business models:

• Different cost structures
• Different supplier bases
• Different customer bases
• Different competencies
• Different approaches to value creation and differentiation
• Different risks of substitutes
• Different risks of new entrants

→ Limited comparability between companies pursuing different models

→ Broad range of relative strengths and weaknesses
Example: Vertical Integration

One big negative, numerous positives:

• Large fixed cost base

• High variable margin
Chip-Fab Economics

Fixed overhead versus variable margin benefit (10-20%)
Example: Vertical Integration

One big negative, numerous positives:

- Large fixed cost base
- High variable margin
- Hands-on control over quality, safety, and social-compliance aspects of products
- Resistant to IP abuses and counterfeiting
- Flexible in responding to lead-time challenges
- Access to markets at component, module, and subsystems levels, important in informing R&D efforts and amortizing R&D costs
- Access to innovation at chip level, key to improvements in product performance and cost reduction
Tunable Transmitter Assembly (TTA): Hybrid integration of InP tunable laser and MZ modulator chips
Chip Innovation – Continuous Improvement

- Tailored grating for “featureless” digital tuning maps

- On-wafer testing for improved process control

- Regular endurance testing (Production wafers with <5GHz stability over 30k hours)

- Ongoing development for
 - Increased power (100 mW ex-facet)
 - Increased (60 nm) tuning range

Fig. 2 Tuned ex-facet power across full tuning range for 380 mA SOA current
Chip Innovation – Next-Gen Products

40G and 100G Transmission:

Full-band tunable DQPSK Encoder is compatible with today’s 10G footprint
Integration of DSDBR laser and MZ modulator on same chip

- 3” diameter wafer process, common with discrete DSDBR and MZ devices
- Integral monitor detectors and bias control
- Cost reduction through
 - reduced handling
 - fewer packaging components
 - smaller footprint
- Compatible with parallel modulator integration for higher speed and phase coding
A Foundry-Model?

Could a centralized III-V chip foundry adequately support necessary innovation in device performance and cost reduction?

Current reality:
• Leading-edge chip design linked to fabrication process capability
• Fab process capability a major source of competitive differentiation

Foundry-model not able to support critical innovations in product performance and cost
Example: Vertical Integration

One big negative, numerous positives:

• Large fixed cost base

• High variable margin

• Hands-on control over quality, safety, and social-compliance aspects of products

• Resistant to IP abuses and counterfeiting

• Flexible in responding to lead-times challenges

• Access to markets at component, module, and subsystems levels, important in informing R&D efforts and amortizing R&D costs

• Access to innovation at chip level, key to improvements in product performance and cost reduction

• Opportunities to leverage capabilities in new markets
Leveraging into New Markets

• Technical capabilities

Laser Products for Materials Processing:
- SM Cooled Module Seed Laser
- 10W 9xx nm MM Uncooled Module
- 80W 9xx nm Multimode Bar on Microchannel Cooler

Filter Products for Bio Instrumentation:
- LED Multiplexer for Fluorescence Illumination
- Precision Filters for PCR Fluorescence and Cytometry

• Business-process capabilities
Summary Observations

• Bubble recovery still playing out
• Fundamental demand for fiber-optic components, although components suppliers currently at weak point in value chain
• Large number of suppliers, with broad range of business models in play
• Chip innovation drives industry-wide performance and cost improvements; Not easily outsourced
• For integrated suppliers, potential for leveraging into new markets