Tape is Dead
Disk is Tape
Flash is Disk
RAM Locality is King

Jim Gray
Microsoft
December 2006
Tape Is Dead
Disk is Tape

- 1TB disks are available
- 10+ TB disks are predicted in 5 years
- Unit disk cost: \(~\$400 \rightarrow \sim \$80\)

- But: \sim 5..15 \text{ hours to read (sequential)}
- \sim 15..150 \text{ days to read (random)}

- Need to treat most of disk as Cold-storage archive
FLASH Storage?

• 1995 16 Mb NAND flash chips
 2005 16 Gb NAND flash
 Doubled each year since 1995

• Market driven by Phones, Cameras, iPod,…
 Low entry-cost,
 ~$30/chip → ~$3/chip

• 2012 1 Tb NAND flash
 == 128 GB chip
 == 1TB or 2TB “disk”
 for ~$400
 or 128GB disk for $40
 or 32GB disk for $5

Samsung prediction
FLASH Some Parameters

5,000 IO/s per chip!

- Chip read ~ 20 MB/s
 write ~ 10 MB/s

 N chips have N x bandwidth

- Latency ~ 25 μs to start read,
 ~ 100 μs to read a “2K page”
 ~ 2,000 μs to erase
 ~ 200 μs to write a “2K page”

- Power ~ 1W for 8 chips and controller
What’s Wrong With FLASH?

• Expensive: $/GB
 – 50x more than disk today
 – Ratio may drop to 10x in 2012

• Limited lifetime
 – ~100k to 1M writes / page
 – requires “wear leveling”
 but, if you have 1B pages,
 then 15,000 years to “use” ½ the pages.

• Slow to write
 you can only write 0’s,
 so erase (set all 1) then write.
Obvious Uses For Flash

• PDAs, cameras, iPod,
• Laptop disks
 – power, rugged, quiet, big enough, ...

• Not so obvious use:
 – ARCHIVE for photo/music/.. because it’s simple to understand.
 – Enterprise drives (lots of IO/s per $ per watt per liter)
One Could Make a Flash Disk (or a Flash File System)

- 6K random reads/sec, 3K random writes/sec
- The IO capacity of 30..45 disks
- Uses 1 W vs 500W...
- Less space, ...

- See “A Design for High-Performance Flash Disks” Birrell, Isard, Thacker, Wobber

MSR-TR-2005-176
We Are Not There Yet

• Current FLASH disks could do much better on writes (100x better (!))
 Algorithms are known but…

• This changes many ratios
 Access time is 20x less (~200us)
 IOps is 100x more

• Re-evaluate page sizes MSR-TR-2006-168
 FlashDB: Dynamic Self-tuning Database for NAND Flash, Suman Nath, Aman Kansal
RAM Locality is King

- The cpu mostly waits for RAM
- Flash / Disk are 100,000 … 1,000,000 clocks away from cpu
- RAM is ~100 clocks away unless you have locality (cache).
- If you want 1CPI (clock per instruction) you have to have the data in cache (program cache is “easy”)
- This requires cache conscious data-structures and algorithms sequential (or predictable) access patterns
- Main Memory DB is going to be common.
Tape is Dead
Disk is Tape
Flash is Disk
RAM Locality is King

Jim Gray
Microsoft
December 2006